Efficient Template Attacks CARDIS 2013

Omar Choudary Markus G. Kuhn

Berlin, 29 November 2013

• Template Attacks [Chari et al., '03]

- Template Attacks [Chari et al., '03]
- Certification to CC profiles requires their evaluation

- Template Attacks [Chari et al., '03]
- Certification to CC profiles requires their evaluation
- Contributions:
 - Dealing with large number of samples (avoiding numerical pitfalls)

- Template Attacks [Chari et al., '03]
- Certification to CC profiles requires their evaluation
- Contributions:
 - Dealing with large number of samples (avoiding numerical pitfalls)
 - Efficient implementation (reducing evaluation time, e.g. from 3 days to 30 minutes)

- Template Attacks [Chari et al., '03]
- Certification to CC profiles requires their evaluation
- Contributions:
 - Dealing with large number of samples (avoiding numerical pitfalls)
 - Efficient implementation (reducing evaluation time, e.g. from 3 days to 30 minutes)
 - Fair evaluation of most common compression techniques
 - Show several assumptions do not hold in general
 - Practical guideline for choosing the right compression

- Template Attacks [Chari et al., '03]
- Certification to CC profiles requires their evaluation
- Contributions:
 - Dealing with large number of samples (avoiding numerical pitfalls)
 - Efficient implementation (reducing evaluation time, e.g. from 3 days to 30 minutes)
 - Fair evaluation of most common compression techniques
 - Show several assumptions do not hold in general
 - Practical guideline for choosing the right compression
 - And ... we provide data and code so you can try it!

Experiment: eavesdropping on 8-bit data bus

Experiment: eavesdropping on 8-bit data bus

Profiling: Acquire Traces

$$k = 1$$

$$k = 255$$

Executed Code:

movw r30, r24

ld r8, 0

ld r9, k

ld r10, 0

ld r11, 0

Profiling: Estimate Templates

Attack: using the multivariate normal distribution

$$\mathrm{d}(k\mid \mathbf{x}) = rac{1}{\sqrt{(2\pi)^m |\mathbf{S}_k|}} \exp\left(-rac{1}{2}(\mathbf{x}-ar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x}-ar{\mathbf{x}}_k)
ight)$$

 $k\star \to \operatorname{argmax}_k \operatorname{d}(k \mid \mathbf{x})$

Problem 1: Floating point issues

$$d(k \mid \mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{S}_k|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x} - \bar{\mathbf{x}}_k)\right)$$

• Issue 1: $\exp(x)$ is only safe for |x| < 710, which is easily exceeded in our experiments.

Problem 1: Floating point issues

$$d(k \mid \mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{S}_k|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x} - \bar{\mathbf{x}}_k)\right)$$

- Issue 1: $\exp(x)$ is only safe for |x| < 710, which is easily exceeded in our experiments.
- Issue 2: $|\mathbf{S}_k|$ can overflow/underflow easily for large $m \ (> 50)$.

These are *real* problems. Naive implementations are likely to fail.

Solution: use LOG

$$d_{\text{LOG}}(k \mid \mathbf{x}) = -\frac{m}{2} \log 2\pi - \frac{1}{2} \log |\mathbf{S}_k| - \frac{1}{2} (\mathbf{x} - \bar{\mathbf{x}}_k)' \mathbf{S}_k^{-1} (\mathbf{x} - \bar{\mathbf{x}}_k)$$

ntroduction Classic Approach **Problems** Efficient Templates Evaluation Conclusion

Caveat: pdf can be larger than 1

"[Choose the candidate k that leads to the] smallest absolute value [of d_{LOG}]"

Introduction Classic Approach Problems Efficient Templates Evaluation Conclusion

Caveat: pdf can be larger than 1

"[Choose the candidate k that leads to the] smallest absolute value [of d_{LOG}]"

Incorrect:

log is monotonic, abs is not! We choose k with *highest* value of d_{LOG} .

Problem 2: dealing with large number of samples

• Myth: problems with inversion of S_k as soon as m is large.

m = number of samples

 $n_{\rm p} = \text{number of traces from profiling, for each } k$

Problem 2: dealing with large number of samples

- Myth: problems with inversion of S_k as soon as m is large.
- Clarification:
 - $n_{\rm p} \leq m$: \mathbf{S}_k cannot be inverted $({\rm rank}(\mathbf{S}_k) < n_{\rm p})$

m = number of samples

 $n_{\rm D}$ = number of traces from profiling, for each k

Conclusion

Problem 2: dealing with large number of samples

- Myth: problems with inversion of S_k as soon as m is large.
- Clarification:
 - $n_p \le m$: \mathbf{S}_k cannot be inverted $(\operatorname{rank}(\mathbf{S}_k) < n_p)$
 - $n_p > m$: S_k will most likely be invertible (ignoring highly correlated samples)

m = number of samples

 $n_{\rm p} =$ number of traces from profiling, for each k

Conclusion

Problem 2: dealing with large number of samples

- Myth: problems with inversion of S_k as soon as m is large.
- Clarification:
 - $n_p \le m$: \mathbf{S}_k cannot be inverted $(\operatorname{rank}(\mathbf{S}_k) < n_p)$
 - n_p > m: S_k will most likely be invertible (ignoring highly correlated samples)
- Problem: obtaining $n_p > m$ can be difficult due to memory and time constrainints.

m = number of samples

 $n_{\rm p} = \text{number of traces from profiling, for each } k$

Scenario 1: S_k dependent on k

Scenario 2: \mathbf{S}_k independent on k

Efficient solution: use S_{pooled}

- **S**_{pooled} is an average of the covariances.
- S_{pooled} uses $|S|n_{\text{p}}$ traces, while S_k only n_{p} .
- Now the condition for non-singularity is $n_{
 m p}>rac{m}{|\mathcal{S}|}$
 - A great advantage in practice.

Mahalanobis Distance

$$\mathrm{d}(k\mid \mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{S}_{\mathrm{pooled}}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}}_k)'\mathbf{S}_{\mathrm{pooled}}^{-1}(\mathbf{x} - \bar{\mathbf{x}}_k)\right)$$

Mahalanobis Distance

$$\mathrm{d}_{\mathrm{MD}}(k\mid \mathbf{x}) = -rac{1}{2}(\mathbf{x}-ar{\mathbf{x}}_k)'\mathbf{S}_{\mathrm{pooled}}^{-1}(\mathbf{x}-ar{\mathbf{x}}_k)$$

Still not optimal: quadratic in **x**

$$\mathrm{d_{MD}} \approx \sum_i \sum_i s_{ij} x_i x_j$$

Combining traces for $n_{\rm a} > 1$

$$\mathrm{d}_{\mathrm{MD}}^{\mathrm{joint}}(k\mid \mathbf{X}_{k\star}) = -\frac{1}{2}\sum_{\mathbf{x}_i\in\mathbf{X}_{k\star}}(\mathbf{x}_i-\bar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x}_i-\bar{\mathbf{x}}_k)$$

Combining traces for $n_{\rm a} > 1$

$$\mathrm{d}_{\mathrm{MD}}^{\mathrm{joint}}(k\mid \mathbf{X}_{k\star}) = -\frac{1}{2}\sum_{\mathbf{x}_i\in \mathbf{X}_{k\star}} (\mathbf{x}_i - \bar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x}_i - \bar{\mathbf{x}}_k)$$

• Computation of MD: $O(m^3)$

 $n_{\rm a} = {\rm number\ of\ traces\ used\ in\ attack}$

Combining traces for $n_a > 1$

$$\mathrm{d_{MD}^{joint}}(k\mid \mathbf{X}_{k\star}) = -\frac{1}{2}\sum_{\mathbf{x}_i\in\mathbf{X}_{k\star}}(\mathbf{x}_i-\bar{\mathbf{x}}_k)'\mathbf{S}_k^{-1}(\mathbf{x}_i-\bar{\mathbf{x}}_k)$$

- Computation of MD: $O(m^3)$
- Total computation: $O(n_a m^3)$
 - Not good for large m
 - 3 days for $m = 125, n_a = 1000$

 $n_{\rm a} = {\rm number\ of\ traces\ used\ in\ attack}$

Linear Discriminant

$$\mathbf{d}_{\mathrm{LINEAR}}^{\mathrm{joint}}(k \mid \mathbf{X}_{k\star}) = \bar{\mathbf{x}}_{k}' \mathbf{S}_{\mathrm{pooled}}^{-1} \left(\sum_{\mathbf{x}_{i} \in \mathbf{X}_{k\star}} \mathbf{x}_{i} \right) - \frac{n_{\mathrm{a}}}{2} \bar{\mathbf{x}}_{k}' \mathbf{S}_{\mathrm{pooled}}^{-1} \bar{\mathbf{x}}_{k}$$

Computation in $O(n_a + m^3)$

- Much better than d_{MD}^{joint} : $O(n_a m^3)$
- In practice: for $m = 125, n_a = 1000$

 - d^{joint}_{MD} needs 3 days
 d^{joint}_{LINEAR} only 30 minutes

Compression Methods

Compression Methods: Sample Selection

Myth: "Additional samples per clock do not provide additional information" [Rechberger, Oswald '05]

- 1ppc: 1 point per clock [Rechberger, Oswald '05]
- 3ppc (20 samples)
- 20ppc (70 samples)
- allap (125 samples)

Compression Methods: PCA

Compression Methods: PCA

[Archambeau et al. '06]
$$\mathbf{U}' \quad \mathbf{S}_k^r \quad \mathbf{U} = \mathbf{S}_k \pmod{m}$$

Compression Methods: PCA

[Archambeau et al. '06]
$$\mathbf{U}' \quad \mathbf{S}_k^r \quad \mathbf{U} = \mathbf{S}_k \quad \text{(small } m\text{)}$$

Our approach 1.
$$(\text{large } m)$$
 $\mathbf{U} = \mathbf{X}_k$ $(\text{small } m)$

2.
$$\mathbf{S}_k = \operatorname{Cov}(\mathbf{X}_k)$$

Compression Methods: LDA

$$\left[egin{array}{c} ar{\mathbf{x}}_0 \ ar{\mathbf{x}}_1 \ dots \ ar{\mathbf{x}}_{255} \end{array}
ight] + \mathbf{S}_{\mathrm{pooled}}
ightarrow \mathrm{LDA}
ightarrow \mathbf{U}$$

$$\left[egin{array}{c} ar{\mathbf{x}}_0 \ ar{\mathbf{x}}_1 \ dots \ ar{\mathbf{x}}_{255} \end{array}
ight] + \mathbf{S}_{\mathrm{pooled}}
ightarrow \mathrm{LDA}
ightarrow \mathbf{U}$$

[Standaert et al. '08]
$$\mathbf{U}' \quad \mathbf{S}_k^r \quad \mathbf{U} = \mathbf{S}_k \quad \text{(small } m\text{)}$$

Compression Methods: LDA

$$\begin{bmatrix} \bar{\boldsymbol{x}}_0 \\ \bar{\boldsymbol{x}}_1 \\ \vdots \\ \bar{\boldsymbol{x}}_{255} \end{bmatrix} + \boldsymbol{\mathsf{S}}_{\mathrm{pooled}} \to \mathrm{LDA} \to \boldsymbol{\mathsf{U}}$$

[Standaert et al. '08]
$$\mathbf{U}'$$
 $\mathbf{S}_k^{\mathrm{r}}$ \mathbf{U} = \mathbf{S}_k (small m)

Our approach: $S_k = I$ (we can ignore it, while using all information!)

Evaluation by *Guessing Entropy*

1. Sort candidates by decreasing score $d(k \mid \mathbf{X}_{k\star})$

Evaluation by *Guessing Entropy*

1. Sort candidates by decreasing score $d(k \mid \mathbf{X}_{k\star})$

$$\begin{array}{cccc} & & 1 & & k=74 \\ 2 & & k=13 \\ D_k\star & = & 3 & k=k\star=9 \\ \end{array}$$
 depth of correct k \vdots \vdots \vdots $256 & k=201$

2. Compute average over all $k\star$: $\bar{D_k}\star$

Evaluation by *Guessing Entropy*

1. Sort candidates by decreasing score $d(k \mid \mathbf{X}_{k\star})$

- 2. Compute average over all $k\star$: $\bar{D_k}\star$
- 3. Guessing Entropy = $\log_2 D_k \star$

Estimates the remaining *key strength* in targeted brute force search that tries most likely candidates first

Results

Results

 n_a (log axis)

10¹

10³

0 10 **PCA**

Results

Practical Guideline

Practical Guideline

Code and Data available

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

- Raw data used for all the results shown in the paper.
- MATLAB scripts to compute template attacks efficiently, including all the algorithms described in the paper.

- Template Attacks can be much more efficient than we thought
 - Can use large number of samples
 - Evaluation time reduced from 3 days to 30 minutes
 - Explore this when using template attacks
 - Might influence CC Evaluation
- Be aware of incorrect assumptions/implementations
 - ⇒ Now you have our paper!
- Practical guideline for choosing the right compression method
- Now you have data and code to implement efficient template attacks

Questions?

Omar Choudary: omar.choudary@cl.cam.ac.uk

Markus G. Kuhn: markus.kuhn@cl.cam.ac.uk

